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2 ACS, Denver:  Novel chemistry at the National Ignition Facility!

The National Ignition Facility (NIF) is currently a 192 beam, 1.3 MJ 
laser 

This spring we performed the first materials 
experiments on the NIF, establishing NIF as a 
uniquely-capable platform for a new regime of 

extreme-compression science.  !
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Rocky Silicate  Mantle 

Iron/Nickel 
Core 

Earth: central pressures ~3.6 Mbar and 
temperatures ~6000 K 

Matter at very extreme densities and temperatures is quite 
common in our universe 

Neptune: central pressures 8 Mbar and 
temperatures  ~5000 K!

C. Hamilton!

C. J. 
Hamilto
n!

Jupiter: central pressures ~77 Mbar and 
temperatures ~16000 K 

Metallic H+ 
(and He, He+ 

or He++) 

Insulating 
H2 and He 

Core 
Material 

“BPM 37093:  A seismological test of crystallization 
theory in white dwarfs”!
Kanaan, et al., A&A (2005)!

BPM 37093, a white dwarf star with a solid 
carbon core!

12,000 K!
1.1 M"

106 g/cc!

Rocks, diamond?!
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The atomic unit of pressure is the pressure required to “seriously 
disrupt the shell structure of atoms” (Bukowinski,1994) 

D. Hicks!

We are considering pressures approaching the 
atomic unit of pressure (1 Hartree / cubic Bohr radius) NIF provides the first opportunity to explore 

matter at the atomic unit of pressure 

Hicks 

Date!

Energy ! ! !          Rydberg !  spectroscopy ! !
! ! ! !                               =>quantum mechanics!

Mass ! ! !          Thomson !  mass spectrometry!
!
Charge ! ! !          Millikan !  oil drop!

! ! ! ! !             =>atoms are divisible!
Length ! ! !          Bragg !  diffraction!

! ! ! ! !             =>crystal structure!
!
!
!
!
!
!
Time ! ! !          Krausz !  attosecond spectroscopy!

! ! ! ! !             =>observe electron bonding!
!
!
!
Pressure! ! !           NIF!     !!

Atomic unit! Discoverer! Capability/implication!

Eh = mee
4 / !2 = 27.2eV

me = 9.11•10
!31kg

e =1.6 •10!19C

a0 = !
2 /mee

2 = .0529nm

t = ! / Eh = 27•10
18 sec

P = Eh / a0

3 = 294Mbar
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Fundamental change in matter 
from KeV chemistry to macro-  
quantized states!
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At least 573 exo-planets, including 144 transiting planets have 
been observed and confirmed* 

Heavy detection biases favor large 
Masses and Radii and small Orbits.!

~7 rocky or metallic “super earths”!
~2 “water worlds”!
~6-9 “icy giants”!

Central pressure estimates require 
an interior model and material EOSs!

Material properties are needed at 
10-1000 Mbar!

*As of Aug. 11, 2011 -- http://exoplanet.eu/!

Central pressures are interpolated, undifferentiated 
compositions and underestimate results for 

differentiated interior models. !
Swift, et al. (2011)!
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Melt curves followed a Lindeman law, structures were 
simple, and conductivities increased at high pressure!

Te
m

pe
ra

tu
re

 (K
)!

Pressure (Mbar)!
.001! 0.1!  1! 10!

100!

500!

900!

Cl16!
C

m
ca

24
?!

P4
13

2?
!

Tetrahedral?!

BCC!

FCC!

Fluid 

Physics !
Gets!

Simple!!Lithium 
or 

Sodium!

Just a few years ago, ultra-high pressure phase diagrams for 
materials were very “simple” 
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Recent observations find complex high-pressure behavior  

Guillaume, Nature Phys. (2011)!
Lithium!

Marqués, PRB (2011)!

Sodium!

Melt curves and structures are experimentally 
very complex for alkali metals.!



8 ACS, Denver:  Novel chemistry at the National Ignition Facility!

New experiments and theories point out surprising and decidedly 
complex behavior at the highest pressures considered.  

FCC, 65 GPa! cI16, 108 GPa! oP8, 119 GPa! tI19, 147 GPa 
Incommensurate!

Increasing Structural Complexity!

hP4, 190 GPa 
Insulating, 

Transparent Electride!

“.	  .	  .	  what	  the	  present	  results	  most	  assuredly	  demonstrate	  is	  the	  importance	  of	  pressure	  in	  
revealing	  the	  limita8ons	  of	  previously	  hallowed	  models	  of	  solids”	  	  

–Neil	  Ashcro=	  (2009).!

Traditional view: All materials become simple at high pressure appears to be incorrect!!

Transparent at the highest pressures!!

Ma, Nature (2009)!Gatti, PRL (2010)!
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High pressures phases of aluminum are also predicted to be 
complex 

“all structures near 300 
Mbar are far from close 

packed”!

Simple Hexagonal!
Electride!

88 – 100 Mbar!

FCC!

HCP!
2.17 Mbar! BCC!

3.8 Mbar!

CMMA!
10 TPa!

CMMA!
Electride!

> 100 Mbar!

Pickard and Needs, Nature Materials (2010).!

V is 5.6% < bcc @ 10 TPa!

V is 2.8% < bcc @ 5 TPa!

Host-Guest structure of 
Ba-IVa!

(Incommensurate 
Electride)!

32-88 Mbar!

No predictions yet 
for melt line of 

aluminum!

Δ
V~1.8%

!

Δ
V~2.8%

!

ΔE ~ -8 eV!
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Fundamental Quantum-Mechanical driving forces appear to be 
responsible for this complexity at extreme compression 

“When the cores are induced to occupy an increasingly larger fraction of the unit cell the 
indications are that a new paradigm, as suggested here, may be appropriate.”!
--Rousseau and Ashcroft, PRL (2008)!

Increasing Compression 

Hard-sphere potential with Pauli exclusion and orthogonal wave functions!
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A new paradigm. Really? 

Are we really about to witness a true 
paradigm shift in extreme compressed-
matter physics?!

“Only as experiment and tentative theory 
are together articulated to a match does 
the discovery emerge and the theory 
become a paradigm” !

! !–p 61!

“Further development ordinarily calls for 
the construction of elaborate equipment, 
the development of an esoteric 
vocabulary and skills, and a refinement 
of concepts. . ..” ! !

!–p 64!



12 ACS, Denver:  Novel chemistry at the National Ignition Facility!

Where on earth do we have the “elaborate equipment” to study 
these emerging material states? 
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Where on earth do we have the “elaborate equipment to study 
these emerging high-pressure solids? Only at the NIF 

Developing a new paradigm for!
Extreme Compression Science!
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NIF Ramp-Compression Experiments have already made the 
relevant exo-planet pressure range from 1 to 50 Mbar accessible. 

Our NIF experiments have demonstrated that we can access the relevant 
pressure composition region for exo-planet interiors.!

This Spring we performed a series of experiments on 
the National Ignition Facilty!
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Laser-driven ramp-
compression EOS 

experiments!
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VISAR—Velocity Interferometer System for Any Reflector 
Is our primary diagnostic 

Imaging line-
VISAR system 

gives phase shift 
(velocity) versus 

position! Streak	

Camera	


VISAR	

(Measures Doppler Shift)	


Etalon	
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Under ramp loading, EOS (stress-density) can be determined from 
free-surface velocity measurements 

Reverbera8o
n	  
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k	  

Design	  constraints:	  

No	  reverbera8on	  
and	  no	  shock	  
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Nano-crystalline 
diamond EOS on NIF!
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We studied the stress-density of solid diamond on the NIF 
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Reseachers: Ray Smith, Jon Eggert,  Dave 
Braun (LLNL), Raymond Jeanloz (UCB), 
Tom Duffy and Jue Wang (Princeton) !
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In addition to the higher energy afforded by NIF, pulse shaping 
was key to achieving higher pressure 
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We use an Iterative Lagrangian Analysis to extract stress and 
density  (Rothman, et al., (2005) 

CL u( ) = Δx
Δt

ρ u( ) = ρ0 1− du CL∫( )−1
Px u( ) = ρ0 CL du∫

Since	  we	  measure	  free	  surface	  
velocity,	  not	  u	  we	  must	  use	  an	  
itera8ve	  correc8on	  developed	  

by	  Rothman	  (2005)	  
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Ramp-compression EOS of nano-crystalline diamond to 50 Mbar.  

Average of three shots!
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Vapor-deposited 
tantalum EOS on NIF!
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NIF: Vapor-deposited tantalum targets 

65, 85, 95, 75 µm Tantalum 
40 µm Diamond 

3 
μm

!
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Unlike diamond shock initiation begins in tantalum at 3.4 Mbar, 
independent of pressure-drive 
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Even with the shock, we extract the sound speed and stress-
density for multiple shots  
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Excellent agreement with previous data from Z and Omega!

These experiments deliver important information about the stress-strain 
relation of materials, but we also need more direct measurements. !
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Powder x-ray 
diffraction of rolled 

tantalum on the 
Omega laser!
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We performed high-pressure x-ray diffraction on tantalum at the 
Omega laser 
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S61261!
Ambient BCC Ta!
4.3 Mbar BCC Ta!

Diffraction data quality is 
roughly where DAC diffraction 
was in the ʻ80s.  We need to 
make similar strides. !
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ASBO1 (9ns 
sweep)!

600

500

400

300

200

100

0

St
re

ss
 (

GP
a)

1086420
Free-Surface Time (ns)

 s61261_A2, Pmax=450 GPa
 s61261_A1, Pmax=450 GPaShot 61261, 

OMEGA 2011-0223!

Target: C[17]Ta[3]C
[40], BL: Fe!

  Ramp drive: 246 J 
(tBL = 4.6 ns)!

P = 4.34±0.09 Mbar!

D
ia
m
on

d	  

Ta
nt
al
um

	  

D
ia
m
on

d	  

V
IS
A
R	  

D
ri
ve
	  

We determine stress by backward integration of diamond free-
surface velocity 
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We have measured the (assumed) BCC density for 8 shots. 
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Shock formation 
in NIF shots!
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Diffraction for S61261 can be interpreted as two phase 
coexistence 

UDL R B
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S61261!
4.3 Mbar!

Ramp Compression!

A consistent understanding of both 
the NIF EOS and the Omega 
diffraction data can be had by 
positing a Ta phase transition near 
3.4 Mbar.!

e.g. Burakovski (2010) predict ω-
phase.!
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We can also determine density assuming the omega phase 
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Extended X-ray 
Absorption Fine 

Structure (EXAFS) at 
the Omega Laser!
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Experimental design for EXAFS is very similar to difraction 

X-ray absorption 
spectrum!
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Backlighter characteristics!

Spherical implosion as x-
ray backlighter!

Driver beams!

Visar mirror!

Visar probe!

Shielding cone!

Omega experimental setup for EXAFS 
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EXAFS data is sensitive to short-range structure, density, and 
temperature 

k (Å-1)!

EXAFS is sensitive to 
temperature through the 

Debye-Waller factor (DWF)!
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This is the first data set at Earth core conditions.!

EXAFS offers a temperature probe in multi-shocked iron.   
BCC phase has not been observed. 

Belonoshko, !
2003!

LIQUID! BCC?!

HCP!
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Wide variety of 
upcoming 

experiments!
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Recent metadynamics survey of carbon proposed a dynamic 
pathway among multiple phases 

Diamond (FC8)!

BC8!

SC4!

MP8!

OP8!De-compress,!
Cool!

Metastable 
Phases?!

BC8!

Sun, Klug, and Martonak, JCP 2009!

SC1!

Possible path to a new 
high-strength material, 
Metastable BC8 carbon! !

Carbon Phase Space!

Diffraction on NIF!
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We have tracked shocks in D2 at 30 Mbar pressures on NIF.   
We plan to measure the stress-strain of those states. 

1 2

3

4

SOP! Po
si

tio
n 

(µ
m

)!

Time (ns)!

4th wave shows continuous 
acceleration from 105 to 146 km/s 
(~3 TPa ,30 Mbar).!

1st!

2nd!

3rd!
4th!

Sh
oc

k 
Ve

lo
ci

ty
 ( 

km
/s

)!

NIC Shock –Timing Work-in-progress with T.R. Boehly, H.F. Robey, J.H 
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Hydrogen!
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Liquid D2–filled 
NIF capsule!

time!
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On Omega, we have developed a platform that will allow Gbar 
pressures on NIF 

Streaked 
Radiograph!

Gbar EOS!

Damien Hicks, Converging Ablator!

Radiographic probe of density as 
well as shock velocity!
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NIF convergent ablator experiments lead to Gbar EOS platform on 
NIF 

Technique measures radius, velocity, 
ρR, and mass of ablator!

Gated 9 keV X-ray radiography!

Backlit D-3He-filled capsule or THD 
Cryo-layered capsule!

Imaging 
slits!

t (
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) !

R (µm)!

Velocity vs Radius!

Capsule Density vs Radius!

Damien Hicks, Converging Ablator!

Gbar EOS!
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